首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
化学   40篇
力学   5篇
数学   1篇
物理学   9篇
  2023年   1篇
  2022年   1篇
  2021年   16篇
  2020年   7篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
排序方式: 共有55条查询结果,搜索用时 62 毫秒
41.
A synthetic route was developed for a novel hexagonal mesoporous silica that has remarkably wide channel diameters and thick walls. The procedure involved the acid-catalyzed hydrolysis of tetraethylorthosilicate in a water/ethanol/isopropoanol solvent mixture while employing 1-hexadecylamine as a templating agent and mesitylene as an auxiliary agent. After removal of the template by either extraction with ethanolic hydrochloric acid or by calcination at 550 °C, the resulting mesoporous materials had surface areas of 1283 and 1211 m2/g. The channel diameters were found to be 47.2-51.1 Å, while the wall thicknesses were 20.9-21.1 Å. X-ray powder diffraction demonstrated that the novel mesoporous silica belonged to the MCM-41 structural family. Notably, they displayed higher thermal and hydrothermal stabilities, and have higher surface areas than conventionally prepared MCM-41 silica. The thickest channel walls (21.1 Å) can withstand calcination to nearly 850 °C with minimal structural damage. The calcined sample was more resistant to hydrothermal treatment in boiling water than was the solvent-extracted product but both materials showed minimal change after 25 h of hydrothermal treatment.  相似文献   
42.
The green biosynthesis of nanoparticles by plant extracts is an attractive and promising technique for medicinal applications. In the current study, we chose one of the daisy plants, Aaronsohnia factorovskyi (which grows in the Najd region, Saudi Arabia), to investigate its anti-microbial efficacy, in combination with silver nanoparticles. The biosynthesized nanoparticles were evaluated for antibacterial activity against Staphylococcus aureus, Bacillus subtilis (Gram-positive), Pseudomonas aeruginosa, and Escherichia coli, (Gram-negative) using the disc diffusion method, while the antifungal activity was assessed against Fusarium oxysporum, Fusarium solani, Helminthosporium rostratum, and Alternaria alternata. The potential phytoconstituents of the plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques, the Field emission scanning electron microscopy (FE-SEM), Chromatography/Mass Spectrometry (GC-MS) techniques, and Zeta potential analysis. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average diameter of 104–140 nm. Biogenic Aaronsohnia factorovskyi-silver nanoparticles (AF-AgNPs) showed significant antibacterial activity against Staphylococcus aureus with inhibition zone diameter to 19.00 ± 2.94 mm, and antifungal activity against Fusarium solani, which reduced the growth of fungal yarn to 1.5 mm. The innovation of the present study is that the green synthesis of NPs, which is simple, cost-effective, provides stable nano-materials, and can be an alternative for the large-scale synthesis of silver nanoparticles.  相似文献   
43.
Novel trisubstituted ethylenes, ring-disubstituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH = C(CN)CO2C3H7 (where R is 2,5-dichloro, 2,6-dichloro, 3,4-dichloro, 2,3-difluoro, 2,4-difluoro, 2,5-difluoro, 2,6-difluoro) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (1.2–3.1% wt.), which then decomposed in the 500–800°C range.  相似文献   
44.
This paper is devoted to study a problem of reflection and refraction of quasi-longitudinal waves under initial stresses at an interface of two anisotropic piezoelectric media with different properties. One of the two media is aluminum nitride, which is considered the down piezoelectric medium and the above medium is chosen as PZT-5H ceramics. The two piezoelectric media welded are assumed to be anisotropic of a type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). The equations of motion and constitutive relations for the piezoelectric media have been written. Suitable boundary conditions are used to obtain the reflection and refraction coefficients. For an incidence of quasi-longitudinal plane waves, four independent-type amplitude ratios of elastic displacement components for plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves, are shown to exist. Also, it is observed that there exist four dependent amplitude ratios of electric potential, which are proportional to the previous four types. Finally, it is found that the coefficients of reflection and refraction are functions of angle of incidence, elastic constants, piezoelectric potential parameters and the initial stresses. Numerical computations and the results obtained are depicted graphically. In the end, a particular case has been reduced from the present study. This investigation is considered important because the initial stresses in such practical problems are inevitable and may result in frequency shift, a change in the velocity of surface waves and controlling the selectivity of a filter compensation of the devices.  相似文献   
45.
Grape seed extract (GSE) is a natural source of polyphenolic compounds and secondary metabolites, which have been tested for their possible antimicrobial activities. In the current study, we tested the antibacterial and antifungal activities of aqueous GSE and the biosynthesized silver nanoparticles loaded with GSE (GSE-AgNPs) against different pathogens. The biosynthesized GSE-AgNPs were assessed by UV spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography/mass spectrometry (GC/MS). The antimicrobial activities were assessed against different bacterial and fungal species. DLS analysis showed that GSE-AgNPs had a Z-Average of 91.89 nm while UV spectroscopy showed that GSE-AgNPs had the highest absorbance at a wavelength of ~415 nm. FTIR analysis revealed that both of GSE and GSE-AgNPs consisted of different functional groups, such as hydroxyl, alkenes, alkyne, and aromatic rings. Both FE-SEM and TEM showed that GSE-AgNPs had larger sizes and rough surfaces than GSE and AgNO3. The results showed significant antimicrobial activities of GSE-AgNPs against all tested species, unlike GSE, which had weaker and limited effects. More studies are needed to investigate the other antimicrobial activities of GSE.  相似文献   
46.
The hitherto elusive monobridged Ge(μ-H)GeH (X1A′) molecule was prepared in the gas phase by bimolecular reaction of atomic germanium with germane (GeH4). Electronic structure calculations revealed that this reaction commenced on the triplet surface with the formation of a van der Waals complex, followed by insertion of germanium into a germanium-hydrogen bond over a submerged barrier to form the triplet digermanylidene intermediate (HGeGeH3); the latter underwent intersystem crossing from the triplet to the singlet surface. On the singlet surface, HGeGeH3 predominantly isomerized through two successive hydrogen shifts prior to unimolecular decomposition to Ge(μ-H)GeH isomer, which is in equilibrium with the vinylidene-type (H2GeGe) and dibridged (Ge(μ-H2)Ge) isomers. This reaction leads to the formation of cyclic dinuclear germanium molecules, which do not exist on the isovalent C2H2 surface, thus deepening our understanding of the role of nonadiabatic reaction dynamics in preparing nonclassical, hydrogen-bridged isomers carrying main group XIV elements.  相似文献   
47.
We report in the present study the in situ formation of magnetic nanoparticles (Fe3O4 or Fe) within porous N-doped carbon (Fe3O4/N@C) via simple impregnation, polymerization, and calcination sequentially. The synthesized nanocomposite structural properties were investigated using different techniques showing its good construction. The formed nanocomposite showed a saturation magnetization (Ms) of 23.0 emu g−1 due to the implanted magnetic nanoparticles and high surface area from the porous N-doped carbon. The nanocomposite was formed as graphite-type layers. The well-synthesized nanocomposite showed a high adsorption affinity toward Pb2+ toxic ions. The nanosorbent showed a maximum adsorption capacity of 250.0 mg/g toward the Pb2+ metallic ions at pH of 5.5, initial Pb2+ concentration of 180.0 mg/L, and room temperature. Due to its superparamagnetic characteristics, an external magnet was used for the fast separation of the nanocomposite. This enabled the study of the nanocomposite reusability toward Pb2+ ions, showing good chemical stability even after six cycles. Subsequently, Fe3O4/N@C nanocomposite was shown to have excellent efficiency for the removal of toxic Pb2+ ions from water.  相似文献   
48.
The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS4, NaGdSnS4, and NaTbSnS4 is reported. Rare earth metal ions like Y3+, Gd3+, and Tb3+ react with the chalcogenide clusters [SnS4]4– in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m2 · g–1 (NaYSnS4), 479 m2 · g–1 (NaGdSnS4), and 354 m2 · g–1 (NaTbSnS4). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2–50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO2 over CH4 or H2. The notable adsorption capacity for toluene (NaYSnS4: 1108 mg · g–1; NaGdSnS4: 921 mg · g–1; and NaTbSnS4: 645 mg · g–1) and high selectivity for gases (CO2/H2: 172 and CO2/CH4: 50 for NaYSnS4, CO2/H2: 155 and CO2/CH4: 37 for NaGdSnS4, and CO2/H2: 75 and CO2/CH4: 28 for NaTbSnS4) indicate potential future use of chalcogels in adsorption‐based gas or hydrocarbon separation processes.  相似文献   
49.
Hydrazonoyl halides have been known for their ability to react with different reagents to afford wide range of bioactive heterocyclic systems as thiazoles and imidazopyrazoles. This research work focused on the synthesis of two new fluorinated hydrazonoyl chlorides and used them in synthesis of novel series of thiazole derivatives and two imidazopyrazole systems. The mechanistic pathways and the structures of all synthesized derivatives were discussed and assured based on the available spectral data. The results of antimicrobial activity of the tested thiazoles and imidazopyrazoles showed that some derivatives have moderate to no activity against tested fungi and bacteria strains. Only one derivative namely 2-(2-(3-fluoro-4-methylphenyl)hydrazono)-7-(2-oxoindolin-3-ylidene)-2,7-dihydro-3H-imidazo[1,2-b]pyrazole-3,6(5H)-dione is the most active against Candida albicans (CA) with IZD = 20 mm, which was equipotent to ketoconazole. Furthermore, docking simulation was carried out to predict the binding pattern of the new compounds in the ATP binding site of the DNA gyrase B enzyme. The results of the docking simulation revealed that compounds 9a-e , 12 , and 13a,b fit well in the ATP binding site of DNA gyrase B with docking score values ranging from −5.883 to −6.833 kcal/mol.  相似文献   
50.
Journal of Radioanalytical and Nuclear Chemistry - Comprehensive radiological survey and evaluation of heavy metal contamination were conducted in Chini Lake, which has been awarded a pristine...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号